English French German Spain Italian DutchRussian Portuguese Japanese Korean Arabic Chinese Simplified

Perbaikan Faktor Daya (Kompensasi)

Thursday, April 30, 2009 ·

Dalam sistem listrik AC/Arus Bolak-Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu:
Daya semu (S, VA, Volt Amper)
Daya aktif (P, W, Watt)
Daya reaktif (Q, VAR, Volt Amper Reaktif)

Untuk rangkaian listrik AC, bentuk gelombang tegangan dan arus sinusoida, besarnya daya setiap saat tidak sama. Maka daya yang merupakan daya rata-rata diukur dengan satuan Watt,Daya ini membentuk energi aktif persatuan waktu dan dapat diukur dengan kwh meter dan juga merupakan daya nyata atau daya aktif (daya poros, daya yang sebenarnya) yang digunakan oleh beban untuk melakukan tugas tertentu.

Sedangkan daya semu dinyatakan dengan satuan Volt-Ampere (disingkat, VA), menyatakan kapasitas peralatan listrik, seperti yang tertera pada peralatan generator dan transformator. Pada suatu instalasi, khususnya di pabrik/industri juga terdapat beban tertentu seperti motor listrik, yang memerlukan bentuk lain dari daya, yaitu daya reaktifVAR) untuk membuat medan magnet atau dengan kata lain daya reaktif adalah daya yang terpakai sebagai energi pembangkitan flux magnetik sehingga timbul magnetisasi dan daya ini dikembalikan ke sistem karena efek induksi elektromagnetik itu sendiri, sehingga daya ini sebenarnya merupakan beban (kebutuhan) pada suatu sistim tenaga listrik.

Gambar 1. Segitiga Daya.
Pengertian Faktor Daya / Faktor Kerja

Faktor daya atau faktor kerja adalah perbandingan antara daya aktif (watt) dengan daya semu/daya total (VA), atau cosinus sudut antara daya aktif dan daya semu/daya total (lihat gambar 1). Daya reaktif yang tinggi akan meningkatkan sudut ini dan sebagai hasilnya faktor daya akan menjadi lebih rendah. Faktor daya selalu lebih kecil atau sama dengan satu.

Secara teoritis, jika seluruh beban daya yang dipasok oleh perusahaan listrik memiliki faktor daya satu, maka daya maksimum yang ditransfer setara dengan kapasitas sistim pendistribusian. Sehingga, dengan beban yang terinduksi dan jika faktor daya berkisar dari 0,2 hingga 0,5, maka kapasitas jaringan distribusi listrik menjadi tertekan. Jadi, daya reaktif (VAR) harus serendah mungkin untuk keluaran kW yang sama dalam rangka meminimalkan kebutuhan daya total (VA).

Faktor Daya / Faktor kerja menggambarkan sudut phasa antara daya aktif dan daya semu. Faktor daya yang rendah merugikan karena mengakibatkan arus beban tinggi. Perbaikan faktor daya ini menggunakan kapasitor.

Kapasitor untuk Memperbaiki Faktor Daya

Faktor daya dapat diperbaiki dengan memasang kapasitor pengkoreksi faktor daya pada sistim distribusi listrik/instalasi listrik di pabrik/industri. Kapasitor bertindak sebagai pembangkit daya reaktif dan oleh karenanya akan mengurangi jumlah daya reaktif, juga daya semu yang dihasilkan oleh bagian utilitas.

Sebuah contoh yang memperlihatkan perbaikan faktor daya dengan pemasangan kapasitor ditunjukkan dibawah ini:

Contoh 1. Sebuah pabrik kimia memasang sebuah trafo 1500 kVA. Kebutuhan parik pada mulanya 1160 kVA dengan faktor daya 0,70. Persentase pembebanan trafo sekitar 78 persen (1160/1500 = 77.3 persen). Untuk memperbaiki faktor daya dan untuk mencegah denda oleh pemasok listrik, pabrik menambahkan sekitar 410 kVAr pada beban motor. Hal ini meningkatkan faktor daya hingga 0,89, dan mengurangi kVA yang diperlukan menjadi 913 kVA, yang merupakan penjumlahan vektor kW dankVAr. Trafo 1500 kVA kemudian hanya berbeban 60 persen dari kapasitasnya. Sehingga pabrik akan dapat menambah beban pada trafonya dimasa mendatang. (Studi lapangan NPC)


Contoh 2. Sekelompok lampu pijar dengan tegangan 220V/58 W, digabungkan dengan 12 lampu TL 11 W, ada 30 buah lampu pijar dan lampu TL. Faktor daya terukur sebesar cos alpha1= 0,5. Hitunglah daya semu dari beban dan besarnya arus I1 sebelum kompensasi, Jika diinginkan faktor kerja menjadi cos alpha2=0,9. hitung besarnya arus I2 (setelah kompensasi).
a) Besarnya daya lampu gabungan
PG = (58 W x 18) + (11 W x 12) = 1176 watt = 1,176 kW
Cos phi1 = PG/S1 ->> S1 = Pg/Cos phi1 = 1,176kW/0,5 = 2,352 kVA.
I1 = S1/U = 2,352 kVA/220 V = 10,69 ampere (A)--> sebelum kompensasi
b) besarnya daya setelah kompensasi (cos phi = 0,9)
S2 = PG/Cos phi2 = 1,176 kW/0,9 = 1,306 kVA
maka I2 = S2/U= 1,306 kVA/220 V = 5,94 A --> setelah kompensasi

Keuntungan Perbaikan Faktor Daya dengan Penambahan Kapasitor

Keuntungan perbaikan faktor daya melalui pemasangan kapasitor adalah:
1. Bagi Konsumen, khususnya perusahaan atau industri:
• Diperlukan hanya sekali investasi untuk pembelian dan pemasangan kapasitor dan tidak ada biaya terus menerus.
• Mengurangi biaya listrik bagi perusahaan, sebab:
(a) daya reaktif (kVAR) tidak lagi dipasok oleh perusahaan utilitas sehingga kebutuhan total(kVA) berkurang dan
(b) nilai denda yang dibayar jika beroperasi pada faktor daya rendah dapat dihindarkan.
• Mengurangi kehilangan distribusi (kWh) dalam jaringan/instalasi pabrik.
• Tingkat tegangan pada beban akhir meningkat sehingga meningkatkan kinerja motor.

2. Bagi utilitas pemasok listrik
• Komponen reaktif pada jaringan dan arus total pada sistim ujung akhir berkurang.
• Kehilangan daya I kwadrat R dalam sistim berkurang karena penurunan arus.
• Kemampuan kapasitas jaringan distribusi listrik meningkat, mengurangi kebutuhan untuk memasang kapasitas tambahan.

METODA PEMASANGAN INSTALASI KAPASITOR

Cara pemasangan instalasi kapasitor dapat dibagi menjadi 3 bagian yaitu :

1. Global compensation
Dengan metode ini kapasitor dipasang di induk panel ( MDP )
Arus yang turun dari pemasangan model ini hanya di penghantar antara panel MDP dan transformator. Sedangkan arus yang lewat setelah MDP tidak turun dengan demikian rugi akibat disipasi panas pada penghantar setelah MDP tidak terpengaruh. Terlebih instalasi tenaga dengan penghantar yang cukup panjang Delta Voltagenya masih cukup besar.


2. Sectoral Compensation
Dengan metoda ini kapasitor yang terdiri dari beberapa panel kapasitor dipasang dipanel SDP. Cara ini cocok diterapkan pada industri dengan kapasitas beban terpasang besar sampai ribuan kva dan terlebih jarak antara panel MDP dan SDP cukup berjauhan.

3. Individual Compensation
Dengan metoda ini kapasitor langsung dipasang pada masing masing beban khususnya yang mempunyai daya yang besar. Cara ini sebenarnya lebih efektif dan lebih baik dari segi teknisnya. Namun ada kekurangan nya yaitu harus menyediakan ruang atau tempat khusus untuk meletakkan kapasitor tersebut sehingga mengurangi nilai estetika. Disamping itu jika mesin yang dipasang sampai ratusan buah berarti total cost yang di perlukan lebih besar dari metode diatas

Komponen-komponen utama yang terdapat pada panel kapasitor antara lain:

1. Main switch / load Break switch
Main switch ini sebagai peralatan kontrol dan isolasi jika ada pemeliharaan panel . Sedangkan untuk pengaman kabel / instalasi sudah tersedia disisi atasnya (dari) MDP.Mains switch atau lebih dikenal load break switch adalah peralatan pemutus dan penyambung yang sifatnya on load yakni dapat diputus dan disambung dalam keadaan berbeban, berbeda dengan on-off switch model knife yang hanya dioperasikan pada saat tidak berbeban .
Untuk menentukan kapasitas yang dipakai dengan perhitungan minimal 25 % lebih besar dari perhitungan KVar terpasang dari sebagai contoh :

Jika daya kvar terpasang 400 Kvar dengan arus 600 Ampere , maka pilihan kita berdasarkan 600 A + 25 % = 757 Ampere yang dipakai size 800 Ampere.

2. Kapasitor Breaker.
Kapasitor Breaker digunkakan untuk mengamankan instalasi kabel dari breaker ke Kapasitor bank dan juga kapasitor itu sendiri. Kapasitas breaker yang digunakan sebesar 1,5 kali dari arus nominal dengan I m = 10 x Ir.
Untuk menghitung besarnya arus dapat digunakan rumus

I n = Qc / 3 . VL

Sebagai contoh : masing masing steps dari 10 steps besarnya 20 Kvar maka dengan menggunakan rumus diatas didapat besarnya arus sebesar 29 ampere , maka pemilihan kapasitas breaker sebesar 29 + 50 % = 43 A atau yang dipakai 40 Ampere.

Selain breaker dapat pula digunakan Fuse, Pemakaian Fuse ini sebenarnya lebih baik karena respon dari kondisi over current dan Short circuit lebih baik namun tidak efisien dalam pengoperasian jika dalam kondisi putus harus selalu ada penggantian fuse. Jika memakai fuse perhitungannya juga sama dengan pemakaian breaker.

3. Magnetic Contactor
Magnetic contactor diperlukan sebagai Peralatan kontrol.Beban kapasitor mempunyai arus puncak yang tinggi , lebih tinggi dari beban motor. Untuk pemilihan magnetic contactor minimal 10 % lebih tinggi dari arus nominal ( pada AC 3 dengan beban induktif/kapasitif). Pemilihan magnetic dengan range ampere lebih tinggi akan lebih baik sehingga umur pemakaian magnetic contactor lebih lama.

5. Kapasitor Bank
Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif..yang akan berfungsi sebagai penyeimbang sifat induktif. Kapasitas kapasitor dari ukuran 5 KVar sampai 60 Kvar. Dari tegangan kerja 230 V sampai 525 Volt atau Kapasitor Bank adalah sekumpulan beberapa kapasitor yang disambung secara parallel untuk mendapatkan kapasitas kapasitif tertentu. Besaran yang sering dipakai adalah Kvar (Kilovolt ampere reaktif) meskipun didalamnya terkandung / tercantum besaran kapasitansi yaitu Farad atau microfarad. Kapasitor ini mempunyai sifat listrik yang kapasitif (leading). Sehingga mempunyai sifat mengurangi / menghilangkan terhadap sifat induktif (leaging)

6. Reactive Power Regulator
Peralatan ini berfungsi untuk mengatur kerja kontaktor agar daya reaktif yang akan disupply ke jaringan/ system dapat bekerja sesuai kapasitas yang dibutuhkan. Dengan acuan pembacaan besaran arus dan tegangan pada sisi utama Breaker maka daya reaktif yang dibutuhkan dapat terbaca dan regulator inilah yang akan mengatur kapan dan berapa daya reaktif yang diperlukan. Peralatan ini mempunyai bermacam macam steps dari 6 steps , 12 steps sampai 18 steps.

Peralatan tambahan yang biasa digunakan pada panel kapasitor antara lain:

- Push button on dan push button off yang berfungsi mengoperasikan magnetic contactor secara manual.
- Selektor auto – off – manual yang berfungsi memilih system operasional auto dari modul atau manual dari push button.
- Exhaust fan + thermostat yang berfungsi mengatur ambeint temperature (suhu udara sekitar) dalam ruang panel kapasitor. Karena kapasitor, kontaktor dan kabel penghantar mempunyai disipasi daya panas yang besar maka temperature ruang panel meningkat.setelah setting dari thermostat terlampaui maka exhust fan akan otomatis berhenti.

Download full pdf...

Klasifikasi Jenis dan Model Lampu serta Armatur

Wednesday, April 29, 2009 ·

Berdasarkan jenis-jenisnya lampu dibedakan menjadi beberapa kelompok antara lain :

Lampu Incandescent (Lampu Pijar)
Lampu Halogen
Lampu Fluorescent (Lampu TL)
Lampu Mercury
Lampu Sodium Tekanan Rendah (SOX)
Lampu Sodium Tekanan Tinggi (SON)
Lampu LED

Lampu Incandenscent (Lampu Pijar)


Karakteristik
Jenis lampu incandenscent ini biasa disebut lampu pijar, lampu pijar akan memancarkan cahaya ketika ada arus listrik melewati filamen kawat pijar pada lampu dan kemudian memanasi filamen tersebut. Pembuatan lampu pijar juga didasarkan pada beberapa faktor, yaitu temperatur filamen, campuran gas yang diisikan, efficacy (im/W), dan umur lampu.
Tahanan filamen tungsten akan semakin tinggi jika temperatur naik, sehingga kenaikan tegangan akan mengakibatkan menaiknya tahanan yang juga akan terjadi sedikit kenaikan arus yang mengalir. Tahanan filamen kira-kira seperempat belas dari keadaan temperatur normal dalam keadaan dingin. Salah satu yang perlu diperhatikan dalam karakteristik lampu pijar ini adalah pengaruh perubahan tegangan terhadap lampu.

Prinsip Kerja
Prinsip kerja dari lampu pijar tersebut adalah dengan cara menghubung singkat listrik pada filamen carbon (C) sehingga terjadi arus hubung singkat pada yang mengakibatkan timbul panas. Panas yang terjadi dibuat hingga suhu tertentu sampai mengeluarkan cahaya,

Kontruksi
Jenis lampu ini lebih dikenal dengan sebutan lampu DOP, termasuk juga lampu yang ditemukan pertama kali oleh Tomas Alva Edison.

Lampu incandescent terdiri atas beberapa bagian utama yaitu bulb atau bola lampu, base lamp, dan filamen kawat pijar

Brass Base
Bentuk dari alat ini biasanya bulat spiral yang biasanya terbuat dari bahan yang tahan panas agar tidak leleh jika dialiri arus listrik, dan bagian ini dirancang untuk tahan terhadap korosi bahan ini berfungsi untuk menghubungkan lampu dengan soket lampu/fitting

Filament Stem Base
Bagian ini berfungsi sebagai pembungkus filament kawat,sebagai isolator,serta sebagai pondasi dasar kawat filament, bagian ini terbuat dari kaca yang meniliki ketahanan panas tinggi dan tidak mudah pecah.

Filament Stem
Berfungsi sebagai penopang posisi filamen kawat shingga tetap tegak berdiri, sehingga performa lampu tetap terjaga.

Lamp Gases
Gas murni yang yang digunakan utuk mengisi ruangan udara di dalam tabung kaca, biasanya diisi oleh gas aragon dn nitrogen, serta gas krypton yang berfungsi sebagai penahan panas dalam tabung lampu.

Filament Support
Bagian yang berfungsi sebagai penyangga filamen kawat agar tidak bersentuhan, terdiri atas lima sampai enam kawat penyangga.

Lampu incandescent terasa sangat panas karena temperatur tabung umumnya mencapai 2700 kelvin, masa kerja lampu ini antara 750-2000 jam

Penggunaan
Lampu pijar digunakan berdasarkan kelebihan-kelebihan yang dimiliki, diantaranya :
i. Untuk penerangan yang membutuhkan pengontrolan cahaya (dimmer) dan ON/OFF secara langsung, contoh tempat penggunaannya:
Panggung / show
v Bioskop
v Studio
v Kamar tidur, dll
ii. Untuk penerangan yang membutuhkan variasi armatur dan warna sehingga memberi suasana lebih menarik dan indah, misalnya di :
v Ruang pertemuan / tamu
v Dekorasi
v Reklame
v Pameran, dll
iii. Untuk penerangan di ruangan, misalnya :
v Toilet
v Gudang kecil, dll

Jenis-jenis Lampu Pijar :
Lampu GLS

i. Lampu Bohlam Bening
ii. Lampu Argenta
iii. Lampu Superlux
iv. Lampu Bohlam Buram
v. Lampu Bohlam Lilin
vi. Lampu Luster

Lampu Reflektor
Berdasarkan kontruksi reflektornya, lampu ini terdiri dari 3 jenis. Yaitu:
i. Lampu reflektor pressed glass
Lampu reflector pressed glass ini reflektornya terbuat dari gelas yang dipress sehingga tahan hujan. Lampu reflektor pressed bisa digunakan untuk penerangan luar (outdoor), misalnya lampu sorot di taman. Lampu ini tersedia dalam daya 100W, 125W, 150W dan 300W

ii. Lampu reflector blown bulb
Lampu reflector blown bulb ini reflektornya terbuat dari gelas biasa dan tipis. Lampu ini hanya digunakan untuk penerangan dalam (indoor), misalnya sebagai lampu sorot di panggung. Lampu reflektor blown bulb tersedia dengan daya 25W, 40W, 60W, 75W, 100W, 150W dan 300W.
iii. Lampu disco
Lampu disco ini reflektornya terbuat sedemikian rupa sehingga sesuai untuk penerangan disko. Lampu disco ini hanya tersedia dalam wattase 40W.

Lampu Halogen

Prinsip Kerja
Lampu halogen termasuk dalam kelompok lampu pijar, sebab prinsip kerja lampu halogen adalah karena memijarnya filament.
Lampu ini dibuat untuk mengatasi masalah ukuran fisik dan struktur yang dihadapi lampu pijar dalam pengunaannya untuk lampu sorot, lampu ”side projector”, dan lampu ”film projector”. Dalam bidang-bidang ini dibutuhkan ukuran bohlam yang sekecil-kecilnya sehingga sistem pengontrolan arah dan pemokusan cahaya dapat dilakukan dengan lebih presisi.
Hal ini berarti kaca bohlam harus berada pada temperatur tinggi dimana menyebabkan bohlam lampu menghitam akbat tungsten yang berevaporasi. Kesulitan ini dapat diatasi dengan penambahan halogen ke dalam bohlam lampu, proses kerjanya disebut Tungsten Halogen Regenerative Cycle (Siklus regenaratif tungsten halogen). Elemen-elemen halogen itu sendiri terdiri dari iodine, bromine, fluorine, dan chlorine.
Iodine dan bromine adalah gas yang digunakan sebagai gas tambahan terhadap gas normal (argon dan nitogen) dalam produksi lampu-lampu halogen, sehingga lampu halogen juga disebut sebagai lampu Iodine Quartz (Quartz Iodine Lamp).

Keterangan Gambar :
1. Terlihat gas halogen diantara gas-gas lainnya dalam lampu halogen. Secara kimia, gas halogen (butir merah) akan bereaksi dengan uap tungsten(butir hitam) yang kemudian menghasilkan halida tungsten.
2. Pada saat filamen tungsten membara, tungsten akan menguap.
3. Gas halogen mengikat uap tungsten tadi menjadi tungsten halida. Ketika halida tersebut menyentuh tungsten filamen yang sedang membara, senyawa tersebut kembali terpecah dimana gas halogen kembali terlepas sementara tungsten kembali melekat pada filamen.
4. Siklus ini berulang terus menerus yang menghasilkan cahaya lampu yang stabil dan umur lampu yang panjang.

Kontruksi
Bohlam
Dikarenakan dinding bohlam dengan filament dekat, maka dinding bohlam akan berada pada temperatur tinggi (minimal 75 ºC). Oleh karena itu, bohlam harus terbuat dari bahan tahan panas,biasanya berupa quartz atau silika. Disamping bohlam lampu yang harus dibuat bahan tahan panas, juga kaki dan penyokong filamen. Kaki lampu halogen terbuat dari porselin yang juga berupa bahan penyekat

Filament dan Penyokong
Bahan filament yang digunakan untuk lampu halogen sama dengan bahan filament yang digunakan pada lampu pijar, yaitu tungsten. Filamen ini harus bekerja pada temperatur antara 2600 ºC sampai 3000 ºC untuk membuat gas halogen berfungsi dalam mencegah terjadinya penghitaman pada dinding bohlam lampu.
Filamen membutuhkan penyokong dalam bohlam karena kontruksinya yang sedemikian rupa sehingga filamen tetap dalam keadaan posisi lurus dalam bohlam. Biasanya penyokong juga terbuat dari tungsten yang sama dengan bahan filamennya sendiri

Jenis lampu
i. Lampu Halogen Berujung Ganda (Double Ended Halogen Lamp)
Lampu ini biasa dipakai untuk lampu sorot, baik indoor maupun outdoor. Dan tersedia dengan daya 200 W sampai 3000 W. Lampu ini hanya untuk pemasangan pada posisi horizontal.
ii. Lampu halogen berujung tunggal (Single Ended Halogen Lamp)
Lampu ini digunakan untuk penerangan di dalam ruangan (indoor). Dapat dipasang dalam posisi sembarang

Ø Armatur
Armatur untuk lampu halogen ini dapat digunakan untuk penerangan indoor dan outdoor, ukurannya tergantung dari wattase lampu yang dipasang di dalamnya. Misalnya ukuran armatur lampu halogen 500 W tidak akan sama dengan ukuran armatur untuk lampu halogen 1000 W dikarenakan perbedaan ukuran panjang bohlam. Bentuk armatur lampu halogen jenis berujung ganda untuk lampu sorot diperlihatkan oleh gambar di bawah ini.

Ø Penggunaan
Lampu halogen banyak digunakan di panggung (Stage Lighting) ataupun studio untuk lampu sorot. Hal ini didasarkan pada sifat-sifat yang dimiliki oleh lampu halogen yang dimana pengaturan cahayanya (dimmer) lebih mudah dilakukan dan ON/OFF dapat secara langsung, disesuaikan dengan kebutuhan sistem penerangan panggung / studio yang diinginkan. Lampu halogen juga digunakan untuk penerangan yang memerlukan fisik lampu yang lebih kecil tetapi dengan fluks cahaya yang tinggi (landasan pacu kapal terbang). Dengan alasan yang sama lampu halogen juga banyak digunakan sebagai lampu proyektor dalam “overhead projector”, lampu depan mobil, dll

Lampu Floresen (TL)

Prinsip Kerja
Lampu floresen atau lebih dikenal dengan istilah lampu TL, sudah dikembangkan sejak tahun 1980, lampu ini bekerja menggunakan gas flour untuk menghasilkan cahaya, dimana energi listrik akan membangkitkan gas di dalam tabung lampu sehingga akan timbul sinar ultar violet. Sinar urtra violet itu akan mebangkitkan phosphors yang kemudian akan bercampur mineral lain yang telah dilaburkan pada sisi bagian dalam tabung lampu sehingga akan menimbulakan cahaya. Phosphors dirancang untuk meradiasi cahaya putih, sehingga sebagian besar model jenis lampu ini berwarna putih.

Kontruksi
Kontruksi tabung lampu fluoresen ini terdiri dari gelas dimana dinding bagian dilapisi serbuk phosphor sehingga tabung kelihatan berwarna putih susu. Bentuk tabung lampu fluoresen ada yang memanjang dan melingkar.
Panjang tabung lampu bervariasi tergantung besar daya, mulai dari panjang 35 cm untuk yang 10 W sampai yang panjangnya 150 cm untuk 65 W. Pada kedua ujung tabung dipasang filamen tungsten yang dilapisi suatu bahan yang dapat beremisi, biasanya terdiri dari barium, strontium, dan calcium. Untuk lampu tabung (Discharge Lamps) filamen ini disebut juga elektroda, karena salah satu dari filamen harus berfungsi sebagai katoda dan yang lainnya anoda. Ke dalam tabung dimasukkan merkuri dan gas argon, yang dimana merkuri akan berfungsi untuk menhasilkan radiasi ultraviolet. Sedangkan gas argon berfungsi untuk keperluan start.

Kontruksi tabung lampu fluoresen

Rangkaian lampu TL

Armatur
Berdasarkan arah cara pemasangannya, armatur lampu fluoresen dibagi menjadi 2 macam. Pertama, armatur yang terpasang langsung pada plafon (surface mounted). Yang berarti lampu fluoresen beserta armaturnya merupakan bagian dari plafon. Kedua, armatur lampu yang digantungkan, dimana tinggi lampu dari bidang kerja dapat diatur dan disesuaikan dengan keperluan.
Banyaknya tabung lampu dalam setiap armatur bervariasi, mulai dari satu tabung sampai dengan empat tabung. Beberapa jenis armatur lampu fluoresen dapat dilihat dari gambar berikut :

I. Dengan satu tabung terbuka
II. Dengan dua tabung terbuka
III. Dengan satu tabung terbuka
IV. Dengan satu tabung tertutup
V. Dengan dua tabung tertutup
Vi. Dengan dua tabung ke bawah

Penggunaan
Penggunaan lampu fluoresen didasarkan pada kelebihan-kelebihannya, yaitu warna cahaya yang lebih menarik, efficacy yang tinggi dan umur yang panjang. Karena itu lampu fluoresen banyak digunakan untuk penerangan yang memerlukan ketiga aspek tersebut, misalnya toko, kantor, sekolah, industri, rumah sakit, atau bahkan untuk penerangan jalan kecil di perkampungan.

Lampu Mercury

Prinsip Kerja
Prinsip kerja lampu merkuri sama dengan prinsip kerja lampu fluoresen, yaitu cahaya yang dihasilkan berdasarkan terjadinya loncatan elektron (electron discharge) didalam tabung lampu.

Kontruksi
Lampu merkuri terdiri dari dua tabung, yaitu tabung dalam (arc tube) dan tabung luar atau bohlam (bulb). Lampu merkuri dengan bohlam bentuk elips cocok bila digunakan untuk penerangan bidang kerja (downward lighting) di industri dimana situasi kerja berdebu.

Cara Kerja
Lampu merkuri terdiri dari tabung dalam dan tabung luar. Tabung dalam diisi merkuri untuk menghasilkan radiasi ultraviolet dan gas argon yang berfungsi untuk keperluan start. Sedangkan bohlam luar berfungsi sebagai rumah tabung dan menjaga kestabilan suhu di sekitar tabung. Lampu merkuri ini bekerja pada faktor daya yang rendah, oleh karena itu harus menggunakan kapasitor untuk memperbaiki faktor daya lampu.

Armatur
Bentuk armatur lampu merkuri tergantung jenis penggunaan lamnpu yang bersangkutan. Armatur untuk penerangan jalan berbeda dengan armatur untuk penerangan industri dan seterusnya.
Berdasarkan jenis penggunaannya, armatur lampu merkuri dapat dibagi menjadi 4 kelompok :

i. Armatur penerangan jalan
ii. Armatur penerangan taman
iii. Armatur penerangan industri
iv. Armatur penerangan sorot

Jenis Lampu Mercury
i) Lampu merkuri fluoresen
ii) Lampu merkuri reflektor
iii) Lampu merkuri blended
iv) Lampu merkuri halide (Metal Halide Lamp)

Lampu Sodium Tekanan Rendah (SOX)

Prinsip Kerja
Lampu SOX ini termasuk dalam kelompok lampu tabung (discharge lamp). Oleh karena itu, prinsip kerja lampu ini sama dengan prinsip kerja lampu tabung lainnya. Yaitu berdasarkan terjadinya pelepasan elektron (electron discharge) dalam tabung gas (arc tube). Tujuan dibuatnya lampu sodium tekanan rendah adalah untuk mencapai efficacy yang setinggi-tingginya, yaitu sampai 200 lm/watt.

Kontruksi
Tabung dalam berbentuk U dan di kedua ujungnya terpasang elektroda yang biasanya terdiri dari filamen tungsten. Untuk menjaga dinding tabung dari kerusakan akibat tekanan uap sodium maka tabung gas dibuat dari gelas ”lime borate” khusus yang tahan terhadap tekanan uap sodium. Ke dalam tabung gas dimasukkan campuran gas argon dann neon, dan logam murni sodium. Gas argon dan neon dimaksudkan untuk keperluan penyalaan awal, sedangkan logam sodium dimaksudkan untuk menghasilkan cahaya kuning.

Cara Kerja
Jika rangkaian lampu dihubungkan terhadap sumber arus bolak-balik, maka arus akan mengalir melalui ballast dan seterusnya ke lampu. Pada saat yang sama argon dan neon yang ada dalam tabung gas akan bekerja untuk menaikkan temperatur dalam tabung gas, dalam tahap ini lampu akan mengeluarkan cahaya kemerah-merahan. Setelah beberapa menit, panas dalam tabung gas akan mencapai temperatur tertentu sehingga sodium yang ada dalam tabung gas akan berubah menjadi uap (vapour). Dengan demikian pelepasan elektron yang terjadi melalui uap sodium akan menghasilkan cahaya yang sebenarnya, yaitu cahaya kuning.

Armatur
Karena karakeristik lampu sodium tekanan rendah sedemikian rupa, warna cahaya kuning, posisi pemasangan harus horizontal, dan bentuk tabung yang memanjang, maka praktis lampu ini hanya sesuai untuk penerangan jalan
Armatur penerangan jalan mempunyai ciri khas tersendiri, yaitu intensitas cahaya yang dipancarkan ke samping kiri dan kanan adalah lebih besar daripada ke bawah. Hal inilah yang memungkinkan pemasangan lampu jalan dapat menempuh jarak yang cukup jauh yaitu 40-60 m.
Setiap armatur dapat berisikan lebih dari satu lampu tergantung jenis armaturnya. Umumnya, peralatan bantu lampu seperti ballast, starter atau ignitor, dan kapasitor perbaikan faktor daya ditempatkan di dalam armatur.
Berikut contoh gambar armatur lampu sodium tekanan rendah (SOX)

Penggunaan
Alasan utama untuk penggunaan lampu SOX adalah penghematan enrgi listrik dan jika colour rendering tidak menjadi masalah. Lampu SOX mempunyai efficacy sampai 200 lm/watt, sedangkan lampu pijar hanya12 lm/watt dan lampu merkuri yang memiliki efficacy sampai 90 lm/watt. Jadi, lampu ini dapat menghemat energi listrik daripada lampu lainnya karena memiliki efficacy yang paling tinggi. Kelebihan lain lampu SOX adalah mempunyai umur yang panjang sampai 12.000 jam, tingkat kesilauan rendah, ketajaman penglihatan (visual acuity) baik, dan juga dalam situasi berkabut atau musim hujan cahaya lampu SOX ini akan lebih dapat menembus dibandingkan cahaya lampu-lampu listrik lainnya. Sehingga pilihan utama untuk penerangan jalan pada daerah berkabut atau berhujan adalah lampu sodium tekanan rendah (SOX).
Sedangkan warna objek yang disinari lampu SOX ini akan berwarna kuning atau hitam, hal inilah yang yang menjadi kekurangan lampu ini sehingga tidak digunakan untuk penerangan yang memerlukan colour rendering yang baik.
Berdasarkan kelebihan-kelebihan dan kekurangannya, maka lampu sodium tekanan rendah sesuai digunakan untuk penerangan jalan-jalan bebas hambatan, jalan-jalan utama menuju luar kota, dan sejenisnya yang tidak mengutamakan colour rendering, dan khususnya pada daerah-daerah yang berkabut dan berhujan.

Lampu Sodium Tekanan Tinggi (SON)

Prinsip Kerja
Lampu sodium tekanan tinggi sering juga disebut lampu SON. Prinsip kerjanya sama dengan prinsip kerja lampu sodium tekanan rendah, yaitu berdasarkan terjadinya pelepasan elektron di dalam tabung lampu. Sesuai dengan namanya, lampu ini mempunyai tekanan gas di dalam tabung kira-kira 1/3 atmosper (250mm merkuri), dibandingkan dengan tekanan gas dalam lampu sodium tekanan rendah yang kira-kira hanya 10-3 mm merkuri. Disamping itu, temperatur kerja tabung lampu sodium tekanan tinggi juga lebih tinggi.

Kontruksi
Lampu sodium tekanan tinggi terdiri dari dua tabung, yaitu:
i. Tabung Gas (arc tube)
Terbuat dari bahan yang tahan terhadap tekanan uap sodium yang harus bekerja pada temperatur tinggi, misalnya stellox ke dalam tabung gas dimasukkan sodium, merkuri yang berfungsi untuk menaikkan tekanan gas dan tegangan kerja lampu sampai batas tertentu, dan xenon untuk keperluan gas start.
ii. Bohlam (bulb)
Terbuat dari gelas yang sama sekali terpisah dari udara luar yang berfungsi untuk mencegah tabung gas terhadap kerusakan akibat bahan kimia dan juga berfungsi untuk mempertahankan kekonstanan temperatur tabung gas.

Cara Kerja
Lampu ini tidak mampu distart dengan tegangan nominal 220 Volt, maka dibutuhkan tegangan tinggi dan frekuensi tinggi sesaat. Gas xenon terionisasi untuk memulai terjadinya pelepasan elektron dalam tabung gas sampai mencapai temperatur kerja yang dibutuhkan. Periode pemanasan ini dapat berlangsung hingga kira-kira 10 menit karena tekanan uap merkuri-sodium awalnya sangat rendah sekali yang tidak dapat menjadikan pelepasan elektron dalam tabung gas. Setelah lampu bekerja normal, merkuri tidak akan tercapai yang menjadikan merkuri memancarkan cahaya.
Lampu sodium tekanan tinggi mempunyai dua jenis starter, yaitu starter jenis ”snap” yang bekerja berdasarkan panas yang terdiri dari bimetal dengan kontak tertutup dan sebuah kumparan pengontrol temperatur bimetal, dan starter jenis ”solid state” adalah start lampu lebih dapat dipercaya dan dapat secara langsung, baik penyalaan awal maupun penyalaan kembali.

Armatur
Jenis armatur lampu sodium tekanan tnggi sesuai dengan jenis penggunaannya, misalnya armatur penerangan jalan, armatur penerangan industri, armatur penerangan sorot, dll. Untuk penggunan yang sama, bentuk dan konstruksi armatur lampu sodium tekanan tinggi sama dengan armatur lampu merkuri. Hal ini dapat terjadi karena bentuk lampu sodium tekanan tinggi sama dengan bentuk lampu mercury.
i. Armatur penerangan industri
ii. Armatur penerangan jalan
iii. Armatur penerangan sorot

Penggunaan
Penggunaan lampu sodium tekanan tinggi didasarkan pada sifat-sifat yang dimilikinya. Lampu ini memiliki efficacy yang tinggi (90-120 lm/watt), umur yang tinggi (12.000-20.000 jam), tetapi mempunyai colour rendering yang kurang baik (CRI hanya 26). Oleh karena itu, lampu sodium tekanan tinggi digunakan untuk penerangan jalan.
Karena colour rendering lampu sodium tekanan tinggi kurang baik dimana perubahan warna objek yang disinari sangat besar dan warna cahayanya (colour appearance) putih keemasan (yellowish) yang kurang memberi keindahan, maka penggunaan lamnpu ini untuk penerangan jalan yang berpenghuni kurang sesuai. Tetapi sesuai digunakan untuk penerangan jalan bebas hambatan, jalan utama, jalan menuju luar kota, penerangan “highmast” untuk jalan besar atau persimpangan jalan bertingkat , dll yang tidak menuntut colour rendering yang baik.

Jenis lampu SON
i. Berbentuk elips
ii. Berbentuk tubular

Lampu Light Emitting Diode (LED)

Prinsip kerja
Sebuah LED adalah sejenis dioda semikonduktor istimewa. Seperti sebuah dioda normal, LED terdiri dari sebuah chip bahan semikonduktor yang diisi penuh, atau di-dop, dengan ketidakmurnian untuk menciptakan sebuah struktur yang disebut p-n junction. Pembawa-muatan - elektron dan lubang mengalir ke junction dari elektroda dengan voltase berbeda. Ketika elektron bertemu dengan lubang, dia jatuh ke tingkat energi yang lebih rendah, dan melepas energi dalam bentuk photon.
Panjang gelombang dari cahaya yang dipancarkan, dan oleh karena itu warnanya, tergantung dari selisih pita energi dari bahan yang membentuk p-n junction. Sebuah dioda normal, biasanya terbuat dari silikon atau germanium, memancarkan cahaya tampak inframerah dekat, tetapi bahan yang digunakan untuk sebuah LED memiliki selisih pita energi antara cahaya inframerah dekat, tampak, dan ultraungu dekat.

LED biru pertama yang dapat mencapai keterangan komersial menggunakan substrat galium nitrida yang ditemukan oleh Shuji Nakamura tahun 1993 sewaktu berkarir di Nichia Corporation di Jepang. LED ini kemudian populer di penghujung tahun 90-an. LED biru ini dapat dikombinasikan ke LED merah dan hijau yang telah ada sebelumnya untuk menciptakan cahaya putih.
LED dengan cahaya putih sekarang ini mayoritas dibuat dengan cara melapisi substrat galium nitrida (GaN) dengan fosfor kuning. Karena warna kuning merangsang penerima warna merah dan hijau di mata manusia, kombinasi antara warna kuning dari fosfor dan warna biru dari substrat akan memberikan kesan warna putih bagi mata manusia.
LED putih juga dapat dibuat dengan cara melapisi fosfor biru, merah dan hijau di substrat ultraviolet dekat yang lebih kurang sama dengan cara kerja lampu fluoresen.
Metode terbaru untuk menciptakan cahaya putih dari LED adalah dengan tidak menggunakan fosfor sama sekali melainkan menggunakan substrat seng selenida yang dapat memancarkan cahaya biru dari area aktif dan cahaya kuning dari substrat itu sendiri.


(c) Drs. R.Panjaitan

Download full pdf...

Penggunaan Electronic Ballast Untuk Lampu Fluorescent

·

Lampu fluorescent lebih dikenal sebagai lampu TL. Lampu penerangan jenis ini lebih banyak dipakai karena daya yang dipakai relatif lebih kecil jika dibandingkan dengan lampu bolam. Selain itu lampu TL juga lebih dingin daripada lampu bolam dengan pemakain daya yang sama.


Penggunaan lampu fluorescent, dan selanjutnya disebut lampu TL ini penggunaannya sudah sangat luas dan sangat umum baik untuk penerangan rumah ataupun penerangan pada industri-industri. Keuntungan dari lmapu TL ini, seperti yang telah disebutkan di atas adalah menghasilkan cahaya output per watt daya yang digunakan lebih tinggi daripada lampu bolam biasa (incandescent lamp).
Sebagai contoh, sebuah penelitian menunjukkan bahwa 32 watt lampu TL akan mengjasilkan cahaya sebesar 1700 lumens pada jarak 1 meter sedangkan 75 watt lampu bolam biasa (lampu bolam dengan filamen tungsten) menghasilkan 1200 lumens. Atau dengan kata lain perbandingan effisiensi lampu TL dan lampu bolam adalah 53 : 16. Effiesiensi disini didefinisikan sebagai intensitas cahaya yang dihasilkan dibagi dengan daya listrik yang digunakan.
Walaupun lampu TL mempunyai keuntungan yang besar yaitu pada penghematan daya, lampu TL juga mempunyai kerugian. Kerugian lampu TL adalah :
Besarnya biaya pembelian satu set lampu TL
Tempat yang digunakan oleh satu set lampu TL lebih besar.

Oleh karena lampu TL standard measih mempunyai kelemahan seperti yang disebutkan di atas maka dengan electronic ballast tempat yang digunakan oleh sebuah lampu TL standar dapat diperkecil sehingga menyamai tempat yang digunakan oleh sebuah lampu bolam. Selain itu dengan electronic ballast dapat mengatasi adanya flicker yang disebabkan karena turunnya frekuensi tegangan supplai.
Gambar 1 Blok Diagram Lampu TL Standar

Operasi lampu TL standar hanya membuthkan komponen yang sangat sedikit yaitu : Ballast (berupa induktor), starter, dan sebuah kapasitor (pada umumnya tidak digunakan) dan sebuah tabung lampu TL. Konstruksi ini dapat dilihat pada gambar 1.
Tabung lampu TL ini diisi oleh semacam gas yang pada saat elektrodanya mendapat tegangan tinggi gas ini akan terionisasi sehingga menyebabkan elektron-elektron pada gas tersebut bergerak dan memendarkan lapisan fluorescent pada lapisan tabung lampu TL.
Starter merupakan komponen penting pada sistem lampu TL ini karena starter akan menghasilkan suatu pulsa trigger agar ballast dapat menghasilkan spike tegangan tinggi. Starter merupakan komponen bimetal yang dibangun di dalam sebuah tabung vacuum yang biasanya diisi dengan gas neon.

Operasi Lampu TL Standar

Ketika tegangan AC 220 volt di hubungkan ke satu set lampu TL maka tegangan diujung-ujung starter sudah cukup utuk menyebabkan gas nenon didalam tabung starter untuk panas (terionisasi) sehingga menyebabkan starter yang kondisi normalnya adalah normally open ini akan ‘closed’ sehingga gas neon di dalamnya dingin (deionisasi) dan dalam kondisi starter ‘closed’ ini terdapat aliran arus yang memanaskan filamen tabung lampu TL sehingga gas yang terdapat didalam tabung lampu TL ini terionisasi.
Pada saat gas neon di dalam tabung starter sudah cukup dingin maka bimetal di dalam tabung starter tersebut akan ‘open’ kembali sehingga ballast akan menghasilkan spike tegangan tinggi yang akan menyebabkan terdapat lompatan elektron dari kedua elektroda dan memendarkan lapisan fluorescent pada tabung lampu TL tersebut..
Perstiwa ini akan berulang ketika gas di dalam tabung lampu TL tidak terionisasi penuh sehingga tidak terdapat cukup arus yang melewati filamen lampu neon tersebut. Lampu neon akan tampak berkedip. Selain itu jika tegangang induksi dari ballast tidak cukup besar maka walaupun tabung neon TL tersebut sudah terionisasi penuh tetap tidak akan menyebabkan lompatan elektron dari salah satu elektroda tersebut.

Jika proses ‘starting up’ yang pertama tidak berhasil maka tegangan diujung-ujung starter akan cukup untuk menyebabkan gas neon di dalamnya untuk terionisasi (panas) sehingga starter ‘closed’. Dan seterusnya sampai lampu TL ini masuk pada kondisi steady state yaitu pada saat impedansinya turun menjadi ratusan ohm . Impedansi dari tabung akan turun dari dari ratusan megaohm menjadi ratusan ohm saja pada saat kondisi ‘steady state’. Arus yang ditarik oleh lampu TL tergantung dari impedansi trafo ballast seri dengan impedansi tabung lampu TL.
Selain itu karena tidak ada sinkronisasi dengan tegangan input maka ada kemungkinan pada saat starter berubah kondisi dari ‘closed’ ke ‘open’ terjadi pada saat tegangan AC turun mendekati nol sehingga tegangan yang dihasilkan oleh ballast tidak cukup untuk menyebabkan lompatan elektron pada tabung lampu TL.

Electronic Ballast

Pada prinsipnya kontroller lampu TL (sering disebut sebagai ballast elektronic) terdiri dari komponen yang memberikan arus dengan frekuensi tinggi di atas 18KHz. Frekuensi yang biasa dipakai adalah frekuensi 20KHz sampai 60KHz.

Aplikasi ini mempunyai beberapa keuntungan yaitu :
Meningkatkan rasio perbandingan konversi daya listrik ke cahaya yang dihasilkan. Tidak terdeteksinya kedipan oleh mata karena kedipannya terjadi pada frekuensi yang sangat tinggi sehingga tidak dapat diikuti oleh kecepatan mata.
Ballast elektronik ringan.
Tetapi dari keuntungannya tersebut ditebus dengan kerumitan rangkaian jika dibandingkan dengan ballast konvensional. Pada elektronik ballast terdapat 3 macam tipe yang sering digunakan yaitu :
Flyback inverter
Rangkaian Current source Resonant
Rangkaian Voltage source resonant

Gambar 2 Blok Diagram Ballast Elektronik

Flyback Inverter

Tipe ini tidak terlalu populer karena adanya pendekatan transien tegangan tinggi sehingga berdampak langsung dengan penggunaan tegangan rangkaian tegangan tinggi begitu pula dengan penggunaan komponen-komponen transistor untuk tegangan tinggi.
Selain itu rangkaian flyback akan menurunkan efisiensi transistor karena kerugian pada saat switching . Kerugian yang utama yaitu flyback inverter akan menghasilkan tegangan berbentuk kotak dan arus berbentuk segitiga. Tegangan dengan bentuk gelombang seperti ini tidak cukup baik untuk lampu TL. Agar rangakaian ini dapat menghasilkan sinyal berbentuk sinus maka perlu ditambahkan komponen induktor dan kapasitor.
Gambar 3 Blok Diagram Flyback Inverter

Rangkaian Current Source Resonant

Untuk rangkaian dengan menggunakan teknik ini membutuhkan komponen tambahan induktor yang dinamakan feed choke. Komponen ini juga harus menggunakan transistor tegangan tinggi. Oleh karena itu rangkaian ballast elektronik ini membutuhkan biaya yang lebih tinggi. Komponen transistor yang digunakan harus mempunyai karakteristik tegangan breakdown (VBR harus lebih besar dari 784 volt dan harus mampu mengalirkan arus kolektor sebesar 1 sampai 2A.
Gambar 4 Blok Diagram Rangkaian Current Source Resonant

Rangkaian Voltage Source Resonant

Rangkaian ini paling banyak dipakai oleh berbagai industri ballast elektronik saat ini. Tegangan AC sebagai tegangan suplai disearahkan dengan mengggunakan bridge DR dan akan mengisi kapasistor bank C1. C1 akan menjadi sumber tegangan DC untuk tabung lampu TL. Kemudian sebuah input filter dibentuk untuk mencegah rangkaian dari tegangan transien dari tegangan suplai PLN dan melemahkan berbagai sumebr noise EMI (Electro Magnetic Interferrence) yang dihasilkan oleh frekuensi tinggi dari tabung lampu TL. Filter input ini dibentuk dengan rangkaian induktor dan kapasitor. Blok diagram rangkaian dapat dilihat pada gambar di bawah ini.

Gambar 5 Blok Diagram Rangkaian Voltage Source Resonant

Input filter ini harus mempunyai spesifikasi yang baik karena harus dapat mencegah interferensi gelombang radio sehingga di Amerika input filter ini harus mempunyai sertifikat FCC.

Pada saat rangkaian dihidupkan maka tabung TL akan mempunyai impedansi yang sangat besar sehingga C4 seakan-akan seri dengan L dan C3 sehingga didapatkan persamaan di atas.
Resonansi yang dihasilkan ini mempunyai tegangan yang cukup besar agar dapat mengionisasi gas yang berada di dalam tabung lampu TL tersebut. Kondisi ini akan menyebabkan kondisi strating yang tiba-tiba sehingga dapat memperpendek umur dari filamen karena filemen belum mendapatkan pemanasan yang cukup untuk mengemisikan elektron. Kondisi ini ditentukan oleh keadaan osilatornya. Pada saat starting up ini pula terdapat arus peak yang sangat besar, sebesar 4 kali arus steady state.
Oleh karena itu harus dipilih transistor yang mempunyai karakterisktik arus kolektor sebesar 4 x arus steady yaitu sekitar 2.75A. Arus steady besarnya sekita 0.75A. Sehingga Q1 dan Q2 harus mampu melewatkan arus sebesar 2.75A.
Ketika tabung TL telah terionisasi dengan penuh maka impedansinya akan turun menjadi ratusan ohm saja sehingga akan membuang muatan pada C4. Kondisi ini akan menggeser frekuensi resonansi ke nilai yang ditentukan oleh C3 dan L. Energi yang sedang digunakan tersebut sekarang lebih kecil begitu pula dengan tegangan di antara elektroda-elektrodanya menjadi kecil pula. Kondisi ini mengakhiri kondisi startup dari lampu TL ini.
Dibawah ini merupakan contoh aplikasi untuk elektronik ballast dengan menggunakan transistor power BUL45.
Gambar 6 Skematik Ballast Elektronik

Yang perlu diperhatikan dalam pengontrollan pada ballast elektronik adalah parameter dari transistor power yang digunakan yang mampu menggaransi terjadinya keadaan steady state dari lampu TL tersebut.

downlaod full document


Download full pdf...


The button image will displayed on your site like this

Electrical

Kunjungi juga !!!

ShoutBox

Name :
Web URL :
Message :
:) :( :D :p :(( :)) :x

Popular Posts

Sitemap Submitter



review electricsourcestation.blogspot.com on alexa.com

SEO Stats powered by MyPagerank.Net